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4.8 Prove that for central force field the equation of motion can be written as;

𝒅𝟐𝒖

𝒅𝜽𝟐
+ 𝒖 = −

𝝁𝒇 𝒖

𝒍𝟐𝒖𝟐
And

𝒅𝟐𝒖

𝒅𝜽𝟐
+ 𝒖 = −

𝒇 𝒖

𝝁𝒉𝟐𝒖𝟐

where 𝒉 = 𝒓𝟐 ሶ𝜽

Solution: Consider a particle of mass “𝜇” is at a distance “𝒓” from the origin. The

acceleration of the particle can have two components in the polar coordinates

𝑎𝑟 = ሷ𝑟 − 𝑟 ሶ𝜃2 (4.8.1)

𝑎𝜃 = 𝑟 ሷ𝜃 + 2 ሶ𝑟 ሶ𝜃 (4.8.2)

Since the central force is always directed along the radial vector “𝒓”. The radial force

is responsible for the motion. Therefore;

𝑓 𝑟 = 𝜇 ሷ𝑟 − 𝑟 ሶ𝜃2 (4.8.3)

𝑓 𝜃 = 0 (4.8.4)

Let us consider a function “𝑢” such that 𝑢 =
1

𝑟
⇒ 𝑟 =

1

𝑢
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𝑑𝑟

𝑑𝑡
= −

1

𝑢2
𝑑𝑢

𝑑𝑡
= −

1

𝑢2
𝑑𝑢

𝑑𝜃

𝑑𝜃

𝑑𝑡

⇒ ሶ𝑟 = −𝑟2 ሶ𝜃
𝑑𝑢

𝑑𝜃

⇒ ሶ𝑟 = −ℎ
𝑑𝑢

𝑑𝜃
(4.8.5)

Differentiating above equation with respect to t

𝑑 ሶ𝑟

𝑑𝑡
= −ℎ

𝑑

𝑑𝑡

𝑑𝑢

𝑑𝜃
= −ℎ

𝑑

𝑑𝜃

𝑑𝑢

𝑑𝑡

⇒ ሷ𝑟 = −ℎ
𝑑

𝑑𝜃

𝑑𝑢

𝑑𝜃

𝑑𝜃

𝑑𝑡

⇒ ሷ𝑟 = −ℎ ሶ𝜃
𝑑

𝑑𝜃

𝑑𝑢

𝑑𝜃
= −ℎ ሶ𝜃

𝑑2𝑢

𝑑𝜃2
(4.8.6)

Since ℎ2 = 𝑟2 ሶ𝜃 ⇒ ሶ𝜃 = ൗℎ 𝑟2 𝑜𝑟
ሶ𝜃 = ℎ𝑢2, Putting in Eq. (4.8.6)

ሷ𝑟 = −ℎ2𝑢2
𝑑2𝑢

𝑑𝜃2
(4.8.7)



Putting 𝑟 =
1

𝑢
, ሶ𝜃 = ℎ𝑢2 and Eq. (4.8.7) in Eq. (4.8.3)

𝑓 𝑟 = 𝜇 ሷ𝑟 − 𝑟 ሶ𝜃2 ⇒ 𝑓 𝑢 = 𝜇 −ℎ2𝑢2
𝑑2𝑢

𝑑𝜃2
− 𝜇

1

𝑢
ℎ𝑢2 2

⇒ 𝑓 𝑢 = −𝜇ℎ2𝑢2
𝑑2𝑢

𝑑𝜃2
− 𝜇ℎ2𝑢3

⇒ 𝑓 𝑢 = −𝜇ℎ2𝑢2
𝑑2𝑢

𝑑𝜃2
+ 𝑢

⇒ −
𝑓 𝑢

𝜇ℎ2𝑢2
=

𝑑2𝑢

𝑑𝜃2
+ 𝑢

⇒
𝑑2𝑢

𝑑𝜃2
+ 𝑢 = −

𝑓 𝑢

𝜇ℎ2𝑢2
(4.8.8)

As required.

Since 𝑙 = 𝜇𝑟2 ሶ𝜃 = 𝜇ℎ putting in Eq. (4.8.8)

𝑑2𝑢

𝑑𝜃2
+ 𝑢 = −

𝜇𝑓 𝑢

𝑙2𝑢2
(4.8.9)

As desired.
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Solution: Let us consider a particle of mass “𝜇” and position vector “𝒓”.

Since 𝑢 =
1

𝑟
⇒ 𝑟 =

1

𝑢

𝑑𝑟

𝑑𝑡
= −

1

𝑢2
𝑑𝑢

𝑑𝑡
−

1

𝑢2
𝑑𝑢

𝑑𝜃

𝑑𝜃

𝑑𝑡

⇒ ሶ𝑟 = −𝑟2 ሶ𝜃
𝑑𝑢

𝑑𝜃
⇒ ሶ𝑟 = −ℎ

𝑑𝑢

𝑑𝜃

Therefore, 𝑣2 = ሶ𝑟2 + 𝑟2 ሶ𝜃2

⇒ 𝑣2 = −ℎ
𝑑𝑢

𝑑𝜃

2
+

1

𝑢2
ℎ𝑢2 2 = ℎ2

𝑑𝑢

𝑑𝜃

2
+ ℎ2𝑢2

⇒ 𝑣2 = ℎ2
𝑑𝑢

𝑑𝜃

2
+ 𝑢2 (4.9.1)

4.9 Show That: a) 𝒗𝟐 = ሶ𝒓𝟐 + 𝒓𝟐 ሶ𝜽𝟐 = 𝒉𝟐
𝒅𝒖

𝒅𝜽

𝟐
+ 𝒖𝟐

b) Using results from part “a” also prove that the conservation of energy equation will be

𝒅𝒖

𝒅𝜽

𝟐
+ 𝒖𝟐 =

𝟐 𝑬−𝑽

𝝁𝒉𝟐
if 𝒖 =

𝟏

𝒓
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Since 𝐸 = 𝑇 + 𝑉 ⇒ 𝑇 = 𝐸 − 𝑉

⇒
1

2
𝜇𝑣2 = 𝐸 − 𝑉

⇒
1

2
𝜇ℎ2

𝑑𝑢

𝑑𝜃

2
+ 𝑢2 = 𝐸 − 𝑉

⇒
𝑑𝑢

𝑑𝜃

2
+ 𝑢2 =

2 𝐸−𝑉

𝜇ℎ2
(4.9.2)

Eq. (4.9.1) and Eq. (4.9.2) are as desired.
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Problem (Page 293, Classical Mechanics by Marion)

Find the force law for a central force field that allows a particle to move in a

logarithmic spiral orbit given by 𝒓 = 𝒌𝒆𝜶𝜽, where “k” and “𝜶” are constants.

Also find value of 𝜽 𝒕 and 𝒓 𝒕 . Also find Energy of the orbit.

Solution. Since we have verified that

𝑑2𝑢

𝑑𝜃2
+ 𝑢 = −

𝜇𝑓 𝑢

𝑙2𝑢2
= −

𝜇𝑟2𝑓 𝑟

𝑙2
(1)

Now using

𝑟 = 𝑘𝑒𝛼𝜃 ⇒u =
1

𝑟
=

1

𝑘
𝑒−𝛼𝜃

Differentiating Twice with respect to θ

𝑑2𝑢

𝑑𝜃2
=

𝛼2

𝑘
𝑒−𝛼𝜃 = 𝛼2𝑢 (2)
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Putting value of u and
𝑑2𝑢

𝑑𝜃2
in equation 1

𝑑2𝑢

𝑑𝜃2
+ 𝑢 = −

𝜇𝑟2𝑓 𝑟

𝑙2

⇒ 𝛼2𝑢 + 𝑢 = −
𝜇𝑟2𝑓 𝑟

𝑙2

⇒ 𝑓 𝑟 = −
𝑙2

𝜇𝑟3
𝛼2 + 1 (3)

Eq. 3 represents the force responsible for motion.

Now the central potential responsible for the motion of the particle will be

𝑉 = 𝑓׬− 𝑟 𝑑𝑟 = −
𝑙2

2𝜇𝑟2
𝛼2 + 1 (4)

Total energy of the system is 𝐸 = 𝑇 + 𝑉 =
1

2
𝜇 ሶ𝑟2 +

𝑙2

2𝜇𝑟2
+ 𝑉 (5)

Now ሶ𝑟 =
𝑑𝑟

𝑑𝜃

𝑑𝜃

𝑑𝑡
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ሶ𝑟 =
𝑑𝑟

𝑑𝜃
ሶ𝜃 =

𝑑𝑟

𝑑𝜃

𝑙

𝜇𝑟2

ሶ𝑟 = 𝑘𝛼𝑒𝛼𝜃
𝑙

𝜇𝑟2
= 𝑟𝛼

𝑙

𝜇𝑟2

ሶ𝑟 = 𝛼
𝑙

𝜇𝑟
(6)

Now 𝐸 = 𝑇 + 𝑉 =
1

2
𝜇 ሶ𝑟2 +

𝑙2

2𝜇𝑟2
+ 𝑉

⇒ 𝐸 =
1

2
𝜇

𝑙𝛼

𝜇𝑟

2
+

𝑙2

2𝜇𝑟2
−

𝑙2

2𝜇𝑟2
𝛼2 + 1

⇒ 𝐸 =
𝑙2

2𝜇𝑟2
𝛼2 + 1 −

𝑙2

2𝜇𝑟2
𝛼2 + 1 = 0 (7)

Eq. 7 gives the total energy of the system. Zero value represent a bound system. Now

we will determine of 𝜃 𝑡 and 𝑟 𝑡
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Since ሶ𝜃 =
𝑙

𝜇𝑟2

𝑑𝜃

𝑑𝑡
=

𝑙

𝜇𝑘2𝑒2𝛼𝜃
⇒𝑒2𝛼𝜃𝑑𝜃 =

𝑙

𝜇𝑘2
𝑑𝑡

Integrating both sides we get
𝑒2𝛼𝜃

2𝛼
=

𝑙𝑡

𝜇𝑘2
+ 𝐶

𝑒2𝛼𝜃 = 2𝛼
𝑙𝑡

𝜇𝑘2
+ 𝐶

⇒ 𝜃 𝑡 =
1

2𝛼
ln 2𝛼

𝑙𝑡

𝜇𝑘2
+ 𝐶 (9)

Now 𝑟 = 𝑘𝑒𝛼𝜃 ⇒
𝑟2

𝑘2
= 𝑒2𝛼𝜃

⇒
𝑟2

𝑘2
= 2𝛼

𝑙𝑡

𝜇𝑘2
+ 𝐶

⇒ 𝑟 𝑡 = 2𝛼𝑘2
𝑙𝑡

𝜇𝑘2
+ 𝐶 (10)



Solve
𝒅𝟐𝒖

𝒅𝜽𝟐
+ 𝒖 = −

𝝁𝒇 𝒖

𝑳𝟐𝒖𝟐
and 𝜽 = 𝜽𝒐 + ׬

ൗ𝒍
𝒓𝟐

𝟐𝝁 𝑬−𝑽 𝒓 −
𝒍𝟐

𝟐𝝁𝒓𝟐

𝒅𝒓 and prove that the solution is the

equation of conic. i.e. the motion under the inverse square law force represent motion on conic

path. Also discuss the possibilities of bound and unbound system.

Let us consider a particle of mass “𝜇” in under inverse square law force. The equation of motion can be

written as

4.10 Equation of motion for a body under central force

(inverse square law force)
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𝑑2𝒖

𝑑𝜃2
+ 𝒖 = −

𝜇𝑓 𝑢

𝑙2𝑢2
(4.10.1)

Since the inverse square attractive force

𝑓 𝑟 = −
𝑘

𝑟2
= −𝑘𝑢2

𝑑2𝒖

𝑑𝜃2
+ 𝒖 =

𝜇𝑘𝑢2

𝑙2𝑢2

𝒅𝟐𝒖

𝒅𝜽𝟐
+ 𝒖 =

𝝁𝒌

𝑙𝟐
(4.10.2)



Starting with equation Eq. (4.10.2)

𝑑2𝒖

𝑑𝜃2
+ 𝒖 =

𝜇𝑘

𝐿2
⇒

𝑑2𝒖

𝑑𝜃2
+ 𝒖 −

𝜇𝑘

𝑙2
= 0 (4.10.2)

Consider a function

𝑦 = 𝒖 −
𝜇𝑘

𝑙2
(4.10.3)

Differentiating above equation Twice

𝑑2𝑦

𝑑𝜃2
=

𝑑2𝒖

𝑑𝜃2
(4.10.4)

Now

𝑑2𝑦

𝑑𝜃2
+ 𝑦 =

𝑑2𝑢

𝑑𝜃2
+ 𝒖 −

𝜇𝑘

𝑙2
= 0

𝑑2𝑦

𝑑𝜃2
+ 𝑦 = 0 (4.10.5) 12

4.10 Equation of motion for a body under central force

(inverse square law force)



It is a second order differential equation where “𝑦” is a function of “𝜃”

And 𝑦 = 𝐴𝑐𝑜𝑠 𝜃 − 𝜃𝑜 (4.10.6)

𝑦 = 𝒖 −
𝜇𝑘

𝑙2
= 𝐴𝑐𝑜𝑠 𝜃 − 𝜃𝑜

1

𝑟
=

𝜇𝑘

𝑙2
+ 𝐴𝑐𝑜𝑠 𝜃 − 𝜃𝑜

⇒

𝑙2

𝜇𝑘

𝑟
= 1 +

𝐴𝑙2

𝜇𝑘
𝑐𝑜𝑠 𝜃 − 𝜃𝑜 (4.10.7)

𝛼

𝑟
= 1 + 𝑒𝑐𝑜𝑠 𝜃 − 𝜃𝑜 (4.10.7)a

where 𝛼 =
𝑙2

𝜇𝑘
Semi latus rectum.

and 𝑒 =
𝐴𝑙2

𝜇𝑘
is eccentricity which is defined as the measure

of deviation from circular shape. 13

4.10 Equation of motion for a body under central force

(inverse square law force)

Equation of conic.



𝜃 = 𝜃𝑜 + ׬
ൗ𝑙
𝑟2

2𝜇 𝐸− 𝑉 𝑟 −
𝑙2

2𝜇𝑟2

𝑑𝑟 (4.10.8)

Since 𝑑𝑢 = −
1

𝑟2
𝑑𝑟 & 𝑉 = −

𝑘

𝑟
= −𝑘𝑢 (4.10.9) & (4.10.10)

Putting Eq. (4.10.4) and Eq. (4.10.5) in Eq. (4.10.3)

𝜃 = 𝜃𝑜 − ׬
𝑑𝑢

2𝜇𝐸

𝑙2
+
2𝜇𝑘

𝑙2
𝑢 − 𝑢2

(4.10.11)

Let
2𝜇𝐸

𝑙2
= 𝑎,

2𝜇𝑘

𝑙2
= 𝑏 and −1 = 𝑐

Then 𝜃 − 𝜃𝑜 = ׬−
𝑑𝑢

2𝜇𝐸

𝑙2
+
2𝜇𝑘

𝑙2
𝑢 − 𝑢2

= ׬−
𝑑𝑢

𝑎+𝑏𝑢+𝑐𝑢2

Now consider the first integral for the motion under central force
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4.10 Equation of motion for a body under central force

(inverse square law force)



𝜃 − 𝜃𝑜 = −
1

−𝑐
𝑐𝑜𝑠−1 −

𝑏+2𝑐𝑢

𝑏2−4𝑎𝑐

𝜃𝑜 − 𝜃 = 𝑐𝑜𝑠−1
−
𝜇𝑘

𝑙2
+𝑢

𝜇𝑘

𝑙2

2
+

2𝜇𝐸

𝑙2

𝑢 =
𝜇𝑘

𝑙2
+

𝜇𝑘

𝑙2
1 +

2𝑙2𝐸

𝜇𝑘2
𝑐𝑜𝑠 𝜃𝑜 − 𝜃

⇒

𝑙2

𝜇𝑘

𝑟
= 1 + 1 +

2𝑙2𝐸

𝜇𝑘2
𝑐𝑜𝑠 𝜃𝑜 − 𝜃

We have shown that the solution of the first integral is an equation of conic
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4.10 Equation of motion for a body under central force

(inverse square law force)

𝛼 =
𝑙2

𝜇𝑘
semi latus rectum and 𝑒 = 1 +

2𝑙2𝐸

𝜇𝑘2
is the eccentricity

⇒
𝛼

𝑟
= 1 + 𝑒𝑐𝑜𝑠 𝜃𝑜 − 𝜃 = 1 + 𝑒𝑐𝑜𝑠 𝜃 − 𝜃𝑜 (4.10.12)



For Eq.(4.10.11) & Eq.(4.10.12) if we assume 𝜃𝑜 = 0 &𝜃 = 0𝑜 & 180𝑜

𝑟1 =
𝛼

1+𝑒
=

𝛼

1+ 1+
2𝑙2𝐸

𝜇𝑘2

& 𝑟2 =
𝛼

1−𝑒
=

𝛼

1− 1+
2𝑙2𝐸

𝜇𝑘2

(4.10.13) & (4.10.14)

For 𝑒 > 1 of 𝐸 > 0, 𝑟2 is negative

And 𝑒 = 1, 𝐸 = 0, 𝑟2 is infinity

Both cases ⇨ motion is unbound

Therefore 𝑒 < 1 and 𝐸 < 0 is necessary to keep a bounded motion.

The finite and positive values of 𝑟1 and 𝑟2 represents the turning points.

Comparing the equation of eccentricity 𝑨 =
𝝁𝒌

𝒍𝟐
𝟏 +

𝟐𝒍𝟐𝑬

𝝁𝒌𝟐
(4.10.15)
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The nature of orbit is determined by eccentricity 𝑒 which depend on energy

Value of E Value of eccentricity Nature of orbit

𝐄 > 𝟏 𝐞 > 𝟏 Hyperbola

𝐄 = 𝟎 𝐞 = 𝟏 Parabola

𝐕𝐞𝐟𝐟 𝐦𝐢𝐧 < 𝐄 < 𝟎 𝟎 < 𝐞 < 𝟏 Ellipse

𝐄 = 𝐕𝐞𝐟𝐟 𝐦𝐢𝐧 𝐞 = 𝟎 Circle

we can always set 𝜃𝑜 = 0 And
1

𝑐
= 𝛼 =

𝐿2

𝜇𝑘
⇒

1

𝑟
= 𝐶 1 + 𝑒𝑐𝑜𝑠 𝜃 − 𝜃𝑜

Nature of the Orbit

• Bound motion is possible only for Ellipse or circle.

• The motion of planets is either circular of elliptical.

• The variation of length of the day and seasonal

changes suggest that the path of the planet is elliptical.
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(inverse square law force)



The ellipse is a curve traced out by a particle moving in such a way that the sum of

its distance from two fixed foci 𝑂 and 𝑂′ is always constant.

𝑂𝑃 + 𝑂′𝑃 = 𝑟 + 𝑟′ = 2𝑎

a is the semi-major axis

𝑟1 + 𝑟2 = 2𝑎 (1)

𝑟1 =
𝛼

1+𝑒
& 𝑟2 =

𝛼

1−𝑒
(2 & 3)

From (1), (2) and (3) ⇒ 𝑟1 + 𝑟2 =
2𝛼

1−𝑒2
= 2𝑎

𝑎 =
𝛼

1−𝑒2
⇒ 𝛼 = 𝑎 1 − 𝑒2 (4.10.15)

Elliptic Orbit

𝑟 =
𝑎 1−𝑒2

1+𝑒𝑐𝑜𝑠𝜃
or 𝑟 =

𝑎 1−𝑒2

1+𝑒𝑐𝑜𝑠 𝜃−𝜃𝑜
This is the polar equation of the orbit.
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4.10 Equation of motion for a body under central force

(inverse square law force)



Not the distance between two foci 𝑂𝑂′ = 𝑟2 − 𝑟1

⇒ 𝑂𝑂′ =
2𝑒𝛼

1−𝑒2
= 2𝑎𝑒

⇒
𝑂𝑂′

2
= 𝑎𝑒 (4.10.16)

From the figure it is clear that 𝑂𝑃′ = 𝑂′𝑃′ and

𝑂𝑃′ + 𝑂′𝑃′ = 2𝑎 & 𝑂𝑃′ = 𝑎

Now from figure 𝑏2 = 𝑂𝑃′ 2 −
𝑂𝑂′

2

2

⇒ 𝑏2= 𝑎2 − 𝑎2𝑒2 = 𝑎2 1 − 𝑒2

⇒ 𝑏 = 𝑎 1 − 𝑒2
19
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(inverse square law force)
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If 𝒆 ≠ 𝟎 then,

Since 𝑒 = 1 +
2𝑙2𝐸

𝜇𝑘2

Therefore, 𝑏 = 𝑎 1 − 1 −
2𝑙2𝐸

𝜇𝑘2

𝑏 = 𝑎 −
2𝑙2𝐸

𝜇𝑘2

The energy of the bounded system is less than zero therefore

it will give a real value solution.

4.10 Equation of motion for a body under central force

(inverse square law force)
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If 𝒆 = 𝟎 ellipse will become circle 𝒃 = 𝒂

(Note in the region when body passes through closest distance the curve is arc of

a circle)

And 1 +
2𝑙2𝐸

𝜇𝑘2
= 0

𝐸 = −
𝜇𝑘2

2𝑙2

Eq. (4.10.15) will be reduced to 𝑎 = 𝛼, therefore the radius of the circle is;

𝑟𝑜 = 𝑎 =
𝑙2

𝜇𝑘
=

−
𝜇𝑘2

2𝐸

𝜇𝑘

And 𝑟𝑜 = −
𝑘

2𝐸

And 𝐸 = −
𝑘

2𝑎

4.10 Equation of motion for a body under central force

(inverse square law force)
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4.10 Equation of motion for a body under central force

(inverse square law force)

Putting this value in equation of eccentricity we get

𝑒 = 1 −
𝑙2

𝜇𝑘𝑎

Using this value the semi-minor axis b can be written as.

𝑏 = 𝑎 1 − 1 +
𝑙2

𝜇𝑘2𝑎

𝑏 = 𝑎
𝑙2

𝜇𝑘2𝑎

𝑏 = 𝑎 Τ1 2
𝑙

𝑘 𝜇


